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Abstract-A theoretical study of film boiling on a sphere in forced convection is given. First of all the 
steady state is analysed, that is, the assumption is made that the sphere temperature is maintained 
constant. Subcooling is included in the model. Simple analytical solutions are obtained for the vapour 
film thickness and local Nusselt number in two limiting cases, corresponding roughly to large and small 
subcooling. The usefulness of these two results is enhanced by two factors: the range not covered by 
either limiting case is rather small, and the parameters occurring in the solutions do not depend explicitly 
on the sphere radius or its velocity. Next it is shown that (in the parameter regime appropriate to the 
experiments so far reported) the transients in the vapour and coolant are negligible and therefore a quasi- 
steady approximation is valid in those regions. Thus the steady-state theory already obtained can be used 

to formulate the unsteady heat-transfer problem for the sphere. The solution of this problem is given. 

NOMENCLATURE* 

Coordinates and field variables 

vapour film thickness ; 
spherical polar coordinates ; 
tangential and normal coordinates 

in vapour film ; 
time ; 
pressure ; 
boundary-layer coordinate in liquid, 

velocity in vapour film ; 
velocity in liquid ; 
temperature ; 
(dimensionless) thickness of thermal 
boundary layer in liquid ; 
angular dependence of 6, ; 
second approximation in vapour film 

(equation 29); 
rate of production of vapour at 

angle Q/2na2 sin 8. 

Material constants (and geometrical constants) 

a, radius of sphere ; 

PT viscosity; 

V, kinematic viscosity; 

k, thermal conductivity ; 
& thermal diffusivity ; 

A,, G-T,; 
A 

A::& 
K-T,; 

coefficients in Pohlhausen solution; 

L, latent heat of vapourisation ; 

CPi specific heat of vapour. 

Dimensionless quantities 

Re, Reynolds number in coolant, 

U,alv,; 

*The Appendix is independent. 

Pe, 

Pr, 

E, 

‘4 
6, 
b, 
47 

h*, 

H, 

Peclet number in coolant, 

U,&; 
Prandtl number in coolant, 

V,/Q ; 
U- T,K’i- T’); 
4@L&P,; 
16k,~,A,/3p,p,U~a2L; 2 
16k,~c,A2/3p,p,U~a2Lx-- 

(n)li2 
P,“’ ; 

D3h4; 

q2/b2 ; 

EP 
- l/Z. 

equatidn (35); 

I~P,~/~PJ’Z,Y~; 
h/a ; 
1, 

$h*; 

p-l/d/,*, 

Subscripts 

W, sphere surface ; 
s, (for material constants) sphere; 

s, (for variables) at vapour/coolant 
interface; 

9, gas (i.e. vapour); 

1, liquid ; 

2, 
at cc in coolant; 
initial value of A, ; 

UP typical value in film. 

INTRODUCTION 

RECENTLY, considerable effort has been put in to 
understanding the phenomenon of vapour explosion, 
or transplosion as it is sometimes called, which 
sometimes occurs when very hot material, say a 
molten metal, is suddenly brought into contact with 
a liquid coolant. This might happen if the core of a 
nuclear reactor were to overheat and melt. If the hot 
material is in the form of coarse droplets to begin 
with, then normally each drop becomes surrounded 
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by a film of coolant vapour which strongly limits the is unnecessarily complicated and contains several 

rate of release of heat. As the drop cools, the film errors, of which the most important lies in the 

becomes unstable and there is a transition to formulation of the heat-conduction problem for the 

nucleate boiling, with much greater heat-transfer metal sphere. We shall take up this question at a 
rate. Occasionally the transition to rapid heat release later stage. 

occurs coherently over a large region of the mixture The object of the present work is to provide the 
of hot and cool material and is accompanied by the appropriate theory for the stable film-boiling regime 
break-up of the hot material into much finer in the experiments reported in [3] and [4]. Subcool- 
particles. This is known as vapour explosion. It is ing and unsteady effects will be incorporated, but no 
important to understand this because the release of attempt is made to predict the conditions under 
mechanical energy may have destructive effects. which the vapour film gives way to nucleate boiling. 

The obvious starting point in the study is the We begin by studying the steady-state film-boiling 
analysis of film boiling on a single sphere. Much of problem which would arise if the sphere temperature 

the published literature on film boiling is concerned were maintained constant (but not necessarily uni- 
with free convection, that is, when the motion of the form over its surface). This extends the work of 

liquid coolant is produced by buoyancy forces and Bromley et al. [I] and Kobayasi [2] to include sub- 

the hot object is held fixed. The problem of forced cooling. Furthermore, the equations will be recast in 
convection, when the hot object is moving through such a way as to make them much more amenable to 
the coolant, is of greater relevance here, and in fact analysis, and explicit analytical solutions will be 
gravitational effects will be omitted altogether. given in two special cases, corresponding (roughly 

A detailed study of film boiling on a cylinder in speaking) to large and small subcooling. 
forced convection has been given by Bromley, Leroy Although this theory is of some interest per se, its 
and Robbers [l]. Here the cylinder was held fixed in true importance is that it provides the key to the 
a stream of coolant at its saturation temperature. unsteady case. It will be shown that the transients in 
The appropriate theoretical analysis was derived ; the liquid and vapour phase are negligible, in that 
that is, a steady state was assumed, and heat they decay on a time scale much shorter than that of 
transport within the liquid coolant was ignored. The the heat release from the sphere. (This holds in the 
analysis reduced eventually to the study of a single parameter ranges corresponding to the experiments.) 
first order ordinary differential equation ; however In other words, the liquid and vapour react 
the structure of this equation is extremely incon- effectively instantaneously to changes in the sphere 
venient because the derivative appears non-linearly, temperature. This means that a quasi-steady approxi- 
and after a certain amount of ad hoc approximation mation will be valid in the liquid and vapour 
the equation was solved numerically in particular phases, and the appropriate theory is of course the 
cases. A similar analysis for the case of flow past a steady-state theory already derived. 
sphere was given by Kobayasi [2]. The rate of heat release from the sphere may now 

More recent experimental work, in which solid be calculated with the (unknown) sphere surface 
metal spheres were first heated and then passed temperature occurring as a parameter. The final step 
rapidly through a tank of water, has been reported is to use the result of this calculation to provide a 
by Walford [3] and Stevens and Witte [4]; work boundary condition for the heat diffusion equation 
with liquid sodium as coolant is described by Witte in the interior of the sphere, and thus determine the 
[5]. These experiments were designed in order to temperature distribution in the sphere. This problem 
study the transition to nucleate boiling mentioned now has the great simplification that the boundary 
earlier, and are presumably intended to simulate the condition does not depend explicitly on the time. 
release of molten reactor fuel into liquid coolant. 
There are two principle differences between these STEADY STATE ANALYSIS 

experiments and those of Bromley et al. [ 11. First, in A sphere of radius u and temperature T, is held in 
most cases the liquid was significantly subcooled a uniform stream of liquid which has undisturbed 
below its saturation temperature; this will have a speed U, and temperature T,. We suppose that T,, 
marked effect on the vapour film because much of is held constant but may depend on 0. The 

the heat released from the sphere will be convected temperature at the vapour-liquid interface is the 
away in the coolant without contributing to the saturation temperature 7; and this is supposed 

production of vapour. Second, in most cases the constant. We shall suppose that the thickness of the 
stable film-boiling regime soon gave way to nucleate vapour film and of the thermal boundary layer in the 
boiling, and indeed the prediction of the temperature coolant are small compared with a. (Thus, in 
at which this takes place is one of the major goals of particular, the Reynolds number of the coolant flow, 
the investigation. It follows that unsteady effects U,a/v, = Re, is supposed large, and similarly the 
must be accounted for in the theory. Peclet number .!J,a/ti, = Pe.) In these regions thin- 

An attempt to provide an analysis for forced- film theory or boundary layer theory will be used. 
convection film boiling on a sphere, including sub- 
cooling of the liquid and transient effects, was made Liquid regim 

by Hsaio, Witte and Cox [6]. However this analysis We suppose that the velocity field is given by a 
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potential flow. This seems to be the usual assump- 

tion made in the literature although not much 
explicit justification is given. The idea appears to be 
that the drag on the liquid is much reduced by the 
presence of the vapour film, which allows the liquid 
to “slip”. We shall show that this idea is mistaken in 
general ; in fact, the maximum velocity in the vapour 
film is much larger than U,, because the vapour is 
subject to the same pressure gradient as the liquid 
adjacent to it while having, of course, much lower 

density. The force exerted on the liquid is usually in 
the forwards or streamwise direction on the up- 
stream side of the sphere. It is not possible to estimate 
this force at this stage because we have no a priori 
estimate of the film thickness ; in the meantime we 
continue with the assumption of potential flow, in 
order to keep the exposition as simple as possible, 
and examine it in detail at the end of the analysis. 

We give here only a sketch of the analysis since it 
may be obtained from [6] by deleting the unsteady 
terms. Then in spherical polar coordinates (r,e,n) 
centred on the sphere and with 0 measured from the 
direction of the oncoming stream, the velocity 
components are 

To find the temperature field we introduce a 

dimensionless boundary-layer coordinate y = [(r/u) 
- l]Pe”2, and then the (dimensionless) energy 
equation takes the form 

and the boundary conditions are 

T* = 1 on y = 0, T* = 0 at y = CC. 

Here, T* = (T-T,)/(T,,-‘I’,). The solution of this 
problem is 

T* = erfc [y.fle)] (2) 

where 

,f(0) = isin 1 -~cosB+~cos’O i > 
. (3) 

\ 

A constant of integration has been determined by the 

requirement that_/(O)#O; in factf(0) = (3/2)“2. 
We shall require the temperature gradient at the 

interface, and this is given, in dimensional form, by 

(4) 

where A2 = T,-- T, and 6, is the dimensionless 
thickness of the thermal boundary layer 

(5) 

In addition to the difficulty over the use of 
potential flow outlined above, the flow often separ- 
ates forming a wake or cavity; the potential flow 
will of course apply only in the region where the flow 
remains attached. 

HMT Vol. 22. No. 2 -C 

Vapour region 
Here we choose coordinates (s, n) where s is length 

measured around the sphere from 0 = 0 and n is 
length measured normal to the surface; thus s = a0 
and n = r-a. The velocity components are (u, u). 
Making the usual boundary-layer approximations, 
the equation of continuity takes the form 

i a -- 
sin Q as 

(usin@+: = 0 (6) 

and the equations of momentum and energy become 

au au i ap a2u 
u--fv- = ---+\?gl 

as an py as afl 

O= _Lap 
ps an 

dT dT d2T 
uds+vx = %,,z 

(7) 

(8) 

(9) 

The vapour-liquid interface is located at n = h(s). 
The boundary conditions on u and T are 

u=O, T=T, on n=O 
3 

u=U,=ZU,sinO, T=T,, on n=h. 
(10) 

The equations will be integrated from n = 0 to 
n = h, and this, together with certain boundary 
conditions, will enable us to eliminate v from the 
system. The continuity equation (6) gives 

&$sinOjOhudn = cu$-v], = Q. (11) 

Here Q is the volume rate of evaporation of liquid 
at the location e divided by 2za2 sin 0 and is coupled 
to the temperature field by means of the equation 

4 r 2~1 

(12) 

in which the square bracket denotes the value of the 
discontinuity of the enclosed quantity at the interface 
n = h. This equation merely links the net flux of heat 
to the interface to the rate of evaporation, via the 
latent heat of vapourisation L. The temperature 
gradient on the liquid side has been given in 
equation (4), so that Q is in fact obtained in terms of 
vapour phase variables. 

Equation (8) indicates that the pressure is inde- 
pendent of n, as usual in boundary-layer theory, and 

therefore equals p(h), the value at the interface. By 
continuity of normal stress at the interface, this is 
equal to the pressure in the liquid at the interface, 
and this in turn may be found from the potential 
flow of the liquid by means of Bernoulli’s equation. 
Thus 

p = constant--~pr[~C.,sinRJ2. (13) 

Integrating (7) from n = 0 to n = h and using (11) 
gives 

Id. h 

zisno s 

i dp au h 
u’dn-U,Q = --h-+v - 

0 ps a~ gafl o’ 

(14) 
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The first term on the left is the rate of change of 
momentum flux and the term U,Q represents the 
momentum which is supplied by the freshly evap- 
orated liquid. These terms will be omitted ; the 
justification for this will be given later when an 

estimate of h is available. 
A similar integration of the energy equation (9) 

again neglecting the analogous terms on the left, 

gives 

,IT Ih 
O=ri,E 

0 

so that the temperature profile is linear. 
We now obtain an approximate solution of the 

equations by the usual Pohlausen-type integral 
technique. We set 

(17) 

where A, and A, are functions of s. Equation (17) 
already satisfies the boundary conditions and 
equation (15); applying the boundary condition at 
n = h to (16) yields 

A,+A, = U, 

and substituting into (14) gives 

1 irp ~A,v, 
0 = --h-_-f. 

ps ds h 

From (12) we obtain 

(18) 

(19) 

The continuity equation (1 I ) becomes 

(20) 

! 
= Q. (21) 

This is the only differential equation remaining; A,, 

A, and Q can be eliminated by means of (18), (19) 

and (20) and the equation then determines the film 
thickness h(s). In terms of the dimensionless quantity 
h* = h/u it becomes 

(22) 

In this equation we have set 

cc=!!5_ 
U,ap, 

16 k,pL,Az 2 Pe,‘z 

lJ = 3p,p, u; UZL (7c)“2 

wheref‘(0) is given in (3) and A1 is supposed known 
and in general depends on 8. Note that (13) has been 
used to determine the pressure gradient term in (19). 

This term was erroneously omitted in [6]; in fact it 
dominates the dynamics of the vapour layer as we 
shall see. We shall not discuss numerical values of x, 
fi and y at this point since the equation will be 

resealed so as to introduce different constants. 
Equation (21) cannot be integrated in closed form, 

but can, of course be integrated numerically in any 
particular case. However, this is of doubtful value, in 
view of the large number of parameters. Instead we 
shall show how the equation may be simplified in 
two special cases and then integrate it analytically. 
We shall thereby gain more insight into which terms 
are likely to be important. Furthermore, the sim- 
plified equations, as it turns out, have the great 
advantage that the dimensionless constants appear- 
ing in them are independent of CJ,, and a, and 
depend only on material constants, and A, and A,. 
This greatly facilitates comparison with experiment. 
(The theory is not, of course, independent of U,, and 
a since it is assumed that Re>> 1 ; but they do not 

appear explicitly.) 
(i) Large subcooling. Here we begin by supposing 

that the LHS of (22) is negligible, and the main 
balance is between the two terms on the right. This 
expresses mathematically the situation in which 
almost all the heat arriving at the interface through 
the vapour is convected away in the liquid, and very 
little is used to produce vapour. This suggests that 
the order of magnitude of h* is /I/v, and we therefore 

set 

h* = “H. (23) . 

After some rearrangement of (22) we find 

s&$sinO(H”sinOcosH+AHsin0) =k-(t?) 

* (24) 

where 

As noted the constants are independent of U, and 

a, and have been roughly evaluated for a water/ 
steam system. We wish to neglect the LHS of (24) and 
this will be possible if E is small and A is not large; it 
is easy to see that these requirements can be met 
simultaneously. In fact, if A, = 300°C AZ need only 
be 10°C to give E = 0.13, and A much less than unity. 
The largest value of A, reported by Stevens and 
Witte [4] is 146”; for this value AZ = 6°C gives c 
about 0.1. We may conclude that the large subcool- 
ing approximation EC< 1 typically requires only that 
A2 be not less than 10°C or so. 

The solution is simply 

1 

H=.@j 

to the first approximation. 
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A higher approximation in the form 

1 
H = f(e) Cl +@I(@)] 

may be sought and it is easy to show that 

sin2Q+4cos2t? 4cosB 4A 
s(Q) = f” -‘-3. (27) 

f 

We note that f(n) = 0 so that H becomes infinite 
near tI = 71. This corresponds to the vapour film 
becoming separated in that region. Moreover the 
approximation (26) fails because g(e) also becomes 
infinite; this indicates that the LHS of (24) is not 
uniformly negligible. This situation can be handled 
in principle by introducing new variables so as to 
restore the neglected terms to the equation. How- 
ever, it turns out that this involves technical 
difficulties which it does not seem worthwhile to 
enter upon here, since in most cases the liquid flow 
will have separated before fJ = rc for some other 
reason, forming a wake, and this invalidates the 
whole basis for the theory. It should be mentioned, 

however, that the approximation (26) fails when 
n-8 is of order &ii8 which may not be particularly 
small. 

(ii) Small subcooling. In this case we begin by 
neglecting the subcooling altogether, so that we set 
y = 0 in (22). After some trial and error it is found that 
the main balance is between the first term in the 

bracket on the left, which derives from the pressure 
gradient, and the term in /l/h* on the right. This 
suggests that the order of magnitude of h* is /I’!“, 
and so we set 

h* = /11143y 

and then (22) is transformed into 

(28) 

&$sinH(X3sinBc0s9+6_K sine)=+-‘$ 

(29) 

where E is as before, and 6 is given by 

where the numerical values are appropriate for 
water/steam. We are here supposing that E is large, 
or rather that e1j4 is large. In the experiments of 
Walford [3] the largest value of E occurs for Ai 
= 800°C A, = 5°C so that ~“~~2.5, so that the 
neglect of terms in em1j4 is not really justified. 
However, since E depends on A2 so strongly, the case 
E >> 1 is not difficult to realise in practice. The term in 
6 is clearly negligible in most cases. 

We consider the solution of (29) when the terms in 
E and 6 are omitted. We find 

Z4 = i (sine)-8’3(c0Se)-4’3 

s 

,” (sin e’)‘13( cos e’)lj3 de’. (30) 

This solution expresses a balance between the 

production of vapour at the interface and the flow 
produced by the pressure gradient. This in turn is 

produced by the potential flow of the liquid and 
therefore vanishes at e = n/2. This is reflected in the 
singularity in (30), as a result of which .% tends to 

infinity as e --* 7~12. 
In this region’ (Q ER/~) the neglect of the small 

term in 6 is no longer justified ; this is the term 
corresponding to the frictional drag of the coolant 
on the vapour film. It might be supposed that these 
forces might prevent, or at any rate significantly 
delay, the singularity in the film thickness. However, 
this is not the case. 

To include these terms the equation must be 
resealed near 8 = z/2. We begin by noting the 
precise form of the singularity in .# as given by (30), 
which is 

- 113 

(31) 

where 

b=; (sin e)5/3 (COS ep3 de 

(32) 

It may be shown that the appropriate variables 
near e = n/2 are 

4 = 6-3(&e) 

G = 6-W (33) 

and the equation, to leading order in the small 
quantity 6, becomes 

$ (c#lG3 +-G) = 0 

or 

4G3+G = m. (34) 

We see that 4G3+m as ~-CO and comparing 
with (31) we have m = b3. The solution of (34) is still 
singular because dG/d4 becomes infinite when 34G2 
+ 1 = 0; combining this with (34) we find that the 
singularity is located at 

$,, = -392-4[I@I[;jl-6= -0.540. (35) 

Thus the separation of the vapour layer produced 
by the reversal of the pressure gradient is somewhat 
delayed by the drag of the coolant and occurs at 
(3 = (~/2)--&,6~. Since 6 is small this angle will 
normally be insignificant. 

Summary ofresults 
The analysis given here gives the film thickness 

and the heat-transfer results are easily obtained. The 
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temperature gradient at the sphere surface is 

?T Al _ =__ 
?n o h 

(36) 

so that the Nusselt number is essentially the 
reciprocal of the film thickness: 

(14) is of the order U$/a, and the viscous term on 
the right is of order v,U,/h. The ratio is Ufh2/avs. 

The “worst” case will be that of small subcooling 
when U, and h are largest, h being of order a/l”4; 

then the ratio in question is of order 

Nil =;. 

For the case of large subcooling 

this expresses the fact that all the heat from the 
sphere is convected away in the liquid, and the 

thickness of the vapour film adjusts itself to the value 
at which this heat flux can be sustained. 

For small subcooling 

h* = fi’:‘,/u (0). (39) 

The ratio of the Nusselt numbers in these two 
limiting cases is $ ~“j170)M(0) = E-i’:fle).iY(e), 
where t: is to be evaluated with the larger value of AZ. 
Since in that case EC< 1 this ratio is large. 

Between the two cases analysed here there will, of 

course, be a parameter regime in which all the terms 
in equation (22) are important, and then there is no 
alternative to numerical integration. This regime is, 

however, quite narrow; for example, if A1 = 4OOC, 
the subcooling is large if A2 > 10°C (~~0.3) and 
negligible if A2 < 1 C (E- 1,4 < 0.13). 

To show how the gap between the two limiting 
cases which have been studied may be filled, without 
numerical integration. we observe that the film 
thickness at 0 = 0 may be obtained as the root of a 
quartic polynomial equation. This has been solved 
numerically and the details are given in Appendix B. 

Finally in this section we examine two assump- 
tions made earlier, that the liquid velocity is given 

by a potential flow and that the non-linear transport 
terms in (14) and the corresponding energy equation 
(15) are negligible. First, the non-linear terms. It is 
necessary to estimate the order of magnitude of the 
velocity in the vapour film, and, as mentioned earlier, 
this is generally much larger than U,. The answer 
can be obtained by solving (18) and (19) for A, and 
A, or by direct order of magnitude calculations. For 
large subcooling we find that the dominant term 
gives the estimate 

and for small subcooling, 

We see that the ratio is particularly large in the 
case of small subcooling; the reason is that the film 
thickness is largest in this case, reducing the size of 
the viscous drag term. 

Now, the non-linear transport term on the left of 

Thus the non-linear terms may be appreciable but 
will not be important. For large subcooling we find 
that the ratio is 

The term U,Q on the left of (14) may be estimated 
using (20) to provide an estimate for Q, and it is 
easily shown that this term is smaller than the non- 
linear transport term. 

Next we examine the assumption of potential flow. 
If, due to viscous forces in the vapour, the liquid 
velocity at the interface departed significantly from 
potential flow, there would be a boundary layer in 
the liquid, adjacent to the interface, of thickness of 
order uRe-1’2. Outside this boundary layer the 
velocity would still be given by potential flow, U, 

say, and so the tangential stress exerted at the 
interface would be of order lc,(L’,- L:,,)Re’ ‘:u. The 

tangential stress on the vapour side is of order p&Ii, 

- U,)/h. Equating the two stresses and recalling that 
U - U, and that U,./U,, is given (in the two cases) 
b;(40) and (41) we find that Cl,,? U, provided 

/*!I lf “f <<,, 
pl hRe”2 U,, 

For large subcooling this reduces to 

kA 
pr’2 L1 

A 

’ k,Az 
?0.04’<< I 

A2 

and this in fact is the most severe restriction on the 
validity of the whole theory. However, it is met in 
most of the experiments of Stevens and Witte [4] 
and some of those of Walford [3], (others are 
covered by the small subcooling approximation). It 
may be remarked that the only alternative to the 
assumption of potential flow (other than direct 

numerical solution of the boundary layer equations) 
.would be an integral technique similar to the one 
used here for the vapour film. This could not be 
expected to produce accuracy better than 10 or 15gl 
and it is therefore reasonable to tolerate a similar 
error from the potential solution. The effect of this 
error will be confined to the detailed determination 
of the function ,fl0) in the heat-transfer rate at the 
vapour-liquid interface. The thermal boundary-layer 
structure in the liquid has already been incorporated 
into this calculation and only the coefficient fun- 
ctions in (1) will change somewhat. The main 
conclusion then follows as before, namely, that the 
dynamics of the vapour film is virtually irrelevant 
and that its thickness adjusts so as to sustain the 
given heat-transfer rate. 
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For small subcooling (42) becomes 

and this means that the vapour drag cannot be 
neglected and has an important effect on the liquid 
flow. However the details of the liquid flow are not 
so important in this case because the heat transport 
in the liquid is negligible by assumption, and the 
most important mechanical effect of the liquid flow is 
due to the pressure gradient at the interface, which is 

the same as that due to potential flow. This pressure 
gradient is transmitted through the liquid boundary 
layer without change. Referring to equation (29) we 
see that the important terms are given correctly by 
potential flow. The interface speed U, is so much less 
than ui, in this case that the vapour can be regarded 
as satisfying a no-slip condition at n = h(s); put 

another way, A, and A2 are much greater than U,, 
so that (18) can be replaced by A, + A, = 0. Thus U, 
drops out of the analysis except near the singularity 
in the solution (30) at 0 = n/2. Near 0 = 7c/2 the term 
6 in (29) enters and the H-dependence of this term 

(namely sin@) involves the assumption of potential 
flow. If this assumption fails the numerical value of 

40 in (35) will be in error, but the qualitative 
conclusion remains, that the singularity is displaced 
only by a distance of order b3. 

Finally in this section we note that as the sphere 
cools At decreases and the small subcooling regime 
(if it exists at the start) must give way to the large 
subcooling regime, and from the estimates just given 
it is evident that the approximations actually 
improve as A, decreases, at any rate so long as (40) 
remains valid. [Equation (40) was derived retaining 
only the dominant term assuming A, >>A, and fails 
when A 1-A2.] This question will be taken up at the 

end of the next section. 

ANALYSIS OF TRANSIENTS 

In this section we examine the time-dependent 

terms in three regions. 
For the liquid coolant we must adjust equation (I) 

by adding a term dT*/&, to the left hand side; here 
t, = tCJ,/a is the appropriate dimensionless time. 
The solution of the resulting equation with the initial 
condition T* = 0 is given in [6] and was originally 
derived by Chao [7]. The correct time scale is a/U, 
as indicated ; this is apparent from the explicit 
solutions given by these authors although it was not 
displayed as such. The unsteady solution (which we 
shall not reproduce here) decays into the steady state 
solution by means of factors exp ( - 3t, ). 

This may be compared, on the other hand, with 
the time scale of the heat release from the sphere, 
which is a’/~, since this is controlled by a diffusion 
equation. The ratio of the two time scales is 

(43) 

and this is typically lo-’ or less, if the Reynolds 
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number of the coolant flow is large, even if the 

sphere is made of a good heat conductor such as 

copper. 
Note that this conclusion holds when the coolant 

is a liquid metal which, for given U, and a, would 
have a considerably lower Peclet number than would 
water. The form of the transient terms as given in 
[6] and [7] involves factors exp( -3Per) where 

s = K-J/a=, suggesting that the decay is dependent 
on Pe, but this dependence is spurious and is a 

consequence of the wrong choice of time scale used 

to define S. 
The question of the transients in the vapour needs 

a little more analysis. Equation (1 l), which expresses 
conservation of mass, must be replaced by 

s 

h 
udn = Q. (44) 

0 

Upon making the same transformations as before, 

we find, for the case of large subcooling, that (24) is 
replaced by 

(45) 

in which EM stands for the term on the left of (24). 
This equation can be used to determine the time 
scale. In fact if the term EM is dropped the equation 
can be solved explicitly, and this neglect of the f?- 
derivatives will be valid uniformly in the initial 
instants because H is the small then. 

We have the equation 

q z = ;-f(o) 
where 

and the solution satisfying the initial condition H(0) 
= 0 is 

(48) 

so that the time scale of the decay into the steady 
state solution Hfl0) = 1 is q as expected. The ratio of 
this to the time scale of the heat release in the sphere 
is 

and this number is small in the experiments with 
water, for which Pe is large, and the sphere was 
made of copper. The case of ultimate practical 
interest involving liquid metal coolants, for which Pe 
is not so large, may not be so large, may not be so 
clear cut ; but here the sphere will probably consist of 
some relatively poor conductor of heat such as 

uranium dioxide, and also the value of AZ will be 
large, so that it will probably be reasonable to 
assume that the ratio in (49) is small. 
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For the case of small subcooling the film thick- 
ness must be resealed by means of the equation 
H = E-~‘~X, using (23) and (28), and although the 

equation cannot now be integrated with respect to t, 
because the B-derivatives are present, it is clear that 
the time scale of the decay into the steady state is 

9E -I14 and so instead of (49) we have 

which is again very small. 

The calculations given here show that if the unit of 
time is chosen to be tr2/h-,, so that in the heat 
diffusion equation in the sphere the coefficients will 
be unity (choosing n as the unit of length, of course), 
then the coefficients of the transient terms in the 
coolant and in the vapour will be the small 
parameters given in (43) and (49). This suggests that 
a quasi-steady approximation will be appropriate in 
those regions; that is, we omit the unsteady terms, 
and the solutions are the steady-state solutions given 
in the previous section. Supposing that A, is given, 
these solutions enable us to calculate the rate of heat 
transfer from the sphere, and hence to formulate and 
solve the heat conduction problem in the sphere. 
From this we can calculate A, as a function oft, and 
hence finally verify a posteriori that the transients in 

the vapour and liquid are negligible. 
The equation to be solved in the interior of the 

sphere is 

and we suppose that initially the sphere is at uniform 
temperature To. 

In the case of large subcooling, the boundary 
condition on r = a is that of prescribed heat flux, 
given by (39) and (41): 

on r=a. (51) 

As anticipated this has the great simplification of 
being independent of t, but on the other hand is 
complicated by the Q-dependence. (This problem is 
incorrectly formulated in [6]). 

The solution of (50) with its initial and boundary 
conditions is long and complicated ; an outline is 
given in Appendix A. Here we give the result for the 
temperature at r = a, 0 = 0, that is, at the forward 
stagnation point; it is here that the temperature is 
usually measured. This is given by 

To-T k,A, 2 

To - T, k, A0 (7~)~” 
Pe1’2 * (t*) (52) 

where A0 = T, - T,, which is the initial value of A1, 
t* = qt/a2 is the appropriate dimensionless time, 
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and the form of the function $ is 

$ = 2.1213t* +0.6931 

-0.2413 exp( - 4.3480t*). . (t* large) (53) 

$ = 9 li2t*‘,2 +; 61,2t* 

0 

li2t*3i2 +;(j+*2,, (t* small) 
(54) 

as explained in the Appendix. A graph of $(t*) is 
given in Fig. 1. 

/ 
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FIG. I. Graph of the function $(t*) in equation (52): 
~ small t* expansion, equation (54) ; 
--------- large t* expansion, equation (53); 

---asymptote as t* + m. 

From (52) it is clear that significant change in T 

takes place in a time of order 

a2 k, A0 

rc, k, A2 Pe- li2 

and it is this, rather than u’/K~, which should be 

compared with the time scales in the coolant and 
vapour. Then the right hand sides of (43) and (49) 
should be multiplied by the factor k, Pe112 A,/k,A, 
and even though Pe is large this ratio will generally 
be small. For a copper sphere the ratio k,/k, is about 
1.6 x 10m3. This completes the justification of the 
neglect of transients in the vapour and liquid. 

The case of small subcooling presents considerably 
more difficulty in the evaluation of the sphere 
temperature, and we shall not enter into this 
problem here. Firstly the nature of the flow beyond 
f3 = 7r/2 is largely unknown because of the separation 
of the vapour film, which presumably forms a wake. 
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Thus no accurate heat-transfer data are available in 
that region. Secondly, even on the front portion of 

the sphere the form of the boundary condition, 
which is found from (42), is non-linear because of the 
occurrence of the factor p”” (which contains Al). 
However the lack of theory for this case is not so 
serious because the small-subcooling regime cannot 

persist for long. To see this we consider the form of E, 
which is proportional to AT/At. If initially A, is large 
enough to make E large, which is the small 
subcooling approximation, as the sphere cools A, 
falls in magnitude and ultimately r: becomes small, 
which is the large subcooling approximation. For 
this reason the large subcooling theory is much the 
more important. 

CONCLUDING REMARKS 

It has been shown that transient film boiling on a 
sphere can, in the parameter ranges of interest, be 
reduced to a study of the steady-state equations in 
the vapour and liquid regions, together with an 
unsteady heat conduction problem in the solid 

sphere. As a consequence of the quasi-steady 
approximation valid in the vapour and coolant, the 
rate of heat transfer is determined solely by material 
constants and the Peclet number of the coolant, and 
in the important case of large subcooling, does not 
depend on the sphere temperature or (explicitly) on 
the time. The thickness of the vapour film adjusts 
itself continually to maintain the constant heat 
transfer rate as the sphere cools. 

The thickness of the vapour film has been found in 
two limiting cases, those of large and small subcool- 
ing, and it happens that the range over which neither 
approximation holds is rather narrow-about 10°C. 
In the case of large subcooling the vapour film 
extends over the entire sphere, separating only at the 
rear stagnation point. For small subcooling the 

vapour film thickness tends to infinity (that is, separ- 
ates) shortly after 0 = n/2. 

Both these results are based on the assumption 
that the coolant flow is described by inviscid 
potential flow, that is, unseparated flow, the idea 
being that the force on the coolant exerted by the 
vapour will not be significant. This assumption may 
not be justified for reasons already discussed and 
may also fail when the film becomes extremely thin. 
We recall that initially the stress exerted by the 
vapour on the coolant is in the streamwise direction 
since U,/U, > 1. As the sphere cools, i.e. A1 
decreases, U, decreases and eventually U,/U, 
becomes of order unity. After this the stress is 
reversed and retards the liquid, and we may enquire 
whether this might provoke separation of the 
coolant flow. We can estimate the time taken for 
U,/U, to decrease to order unity, which, from (40), 
occurs when A 1-A2. Using (52) to find A, as a 
function oft*, we find 

G 3 Dn1/2 
A z- 0 A -;$&A&(t*). 

Since A,<<A,, the balance can only be achieved 

when the terms on the right are of the same order. 
This gives an estimate for t*, which is therefore 

simply the time taken for the vapour film to 

disappear altogether. Assuming that $ may be 
replaced by its leading term (as t*+ co) we find 

t* 
1 k, (n)“’ A,, 

-2.1213k,2pe”z~ 

If typical values from the experiments are sub- 

stituted into this expression it is found that the times 
are much longer than the time taken for the 
transition to turbulent film boiling or nucleate 
boiling, and usually longer than the entire experi- 
ment. For example, taking values from the experi- 

ments of Walford [3], A0 = 7OO”C, A2 = 4O”C, 
Pr = 2.4 x 10J, gives I = 2.6s, compared with the 

duration of the experiment which was about 0.25s. 

These results suggest that the breakdown of the film 
boiling regime is not likely to be linked with the 
separation of the liquid flow caused by vapour drag. 

A detailed comparison of theory and experiment is 

not possible at the present time because of a lack of 
relevant data. Walford [3] gives only heat flux 
measurements averaged over the whole cooling 
process, including (in almost all cases) regimes other 
than stable film boiling. No data concerning the 
temperature as a function of the time are given. 
Stevens and Witte [4] measured the temperature as 
a function of time but give only a single oscilloscope 
trace on a scale which is too small to be of use in the 
present context. They also give instantaneous heat 
transfer rates calculated from the measured tempera- 
ture traces by assuming the sphere cooled uniformly. 
This assumption is not justified, as the present 
analysis shows ; it is possible in principle, however, to 

reconstruct the measured temperature gradient 
dT/dt from the data, but their use of log-log plots 
makes this difficult to do with satisfactory accuracy. 
A further difficulty arising from the fact that the time 
variation is not given explicitly is that in order to 
substitute into the function $(t*) it is essential to 
know whether t* is large or small, since this 
obviously has a profound effect on the slope. 
[It may be remarked that the accuracy of the 

expressions for $(t*) is made worse if they are 
differentiated term by term.] However, assuming that 
dlC//dt* lies between 2 and 5, and using (52) to 
substitute into Stevens and Witte’s expression for the 
heat-transfer rate (the unnumbered formula on p. 
447) gives values of the right order, namely about 6 
(in their units). 

No attempt has been made to predict or explain 

the transition to nucleate boiling or turbulent film 
boiling, or how these phenomena are linked to 
vapour explosions. The stable film-boiling regime 
analysed here may be regarded as providing the 
initial conditions for these studies. 
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APPENDIX A 

It is easy to see that the heat-ditfusion problem in the 
sphere reduces to the following dimensionless boundary- 
value problem: 

?2T 2?T 1 r’ 
T+-,+---- 

r2 sin 0 dB r cr 
(Al) 

with 

g =f(fl) on r = I, t>O 

(A2) 

T = 0 when t = 0. 

The function fl0) is given in equation (3). To obtain a 
solution by separation of variables we begin by expressing 
f(0) as a sum of Legendre polynomials: 

a 

.f(W = E A,P,(cos 0) 

It is not necessary to find more than the first few 
coefficients A, (as will be shown), which are 

A, = $2)” = 0.7071, 
2 

A, =;(2)‘~2[+;j =0.5907, 

A, = ‘I (2)‘*‘/;-; (3)““] = 0.0893, 
2 

A, = ;(2)i’” 
24 
-5(i)“‘-; 

I 
= 1.6702 

By expanding T in a similar fashion 

T= ~T~(r,t)P,(cos0) 
0 

we obtain a sequence of problems for each Tn. We find 

To = A,, ir’+3t-A 

Tl = A, P, (cos 0) 

X r-2: 
/ 

jI (al& 

1 (a:,- 2al,h(alp) 
ev( - a$) 

I 
(44) 

T, = A” P, (CDS 0) (r”-IZj 
n 

T= 3A,t+;Ao+ i;!A..... (As) 
In 

Next we examine the range of t over which the infinite 
series are negligible. In (A4) we find that the first value of 
a,, is a o, = 4.4934 so that the exponential terms tend to 
zero extremely rapidly as t increases. The whole series in 
fact contributes only 3% of the total when t is as small as 
0.1. In (AS) the numbers are not so fortunately disposed 
since a i, = 2.08518. If t = 0.2 it will be necessary to retain 
the first term in this series, but since aI = 5.94037 the rest 
may be neglected. A similar inspection of the rest of the 
series shows that they may be neglected for t-0.2; for T, 
the approximation is improved by the circumstance that A, 
is small. We may improve (A5) somewhat, then, to 

T= 3A,t+;Ao+ $-?A 
1 

I----exp(-a?,r) 
1 ” 4- 2all 

= 2.1213r+0.6931-0.2413exp(-4.3480t) (A6) 

and as explained this will give good accuracy down to 
about t = 0.2. 

Although the series (A4), (A5) give the solution for all r 
the convergence is poor for small t and the solution for 
small t is best obtained by another method. Since the 
temperature at r = I is the quantity of interest the most 
convenient procedure is to introduce the similarity variable 
r~ = (1 -r)/t I.” into the equation and boundary conditions 
and expand the solution in a power series in t”*: 

T= t’2T”(r/,0)+tT’(i~,0)+tJ~2T2(r/,0).... (.47) 

The fJ dependence occurs only parametrically and so the 
equations for the coefficient functions are effectively 
ordinary differential equations. It is a straightforward but 
lengthy matter to obtain the appropriate solutions, which 
are 

To = ~&)f(@, TV = 2 i erfci rj 

1 
T’ = ~,(n)fle). 5, = -4i2erfcZrIT22?b 

T2 = [32f(@)-8&+)]1” crfcin + [~-vv)]~,- 2T;f(0) 

T” = [120g(ii)-240/(R)]i4erfc12~ 

+[0-40@lr, +[2g(0)+2.f(0)] ‘170 
s 

+[4g(H)-12/70)]?;-2~T2. 
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A 2’ “C 

FIG. 2. Graph of the positive real root of (Bl) with Ai = 250°C as a function of A2 : __ exact solution ; --------- small 
subcooling approximation ; - - - large subcooling approximation. 

By setting f3 = 0, q = 0 we find the temperature at the 
stagnation point as a function oft: 

“I2 
r3’z+;(6)‘:‘r’.. (AS) 

which complements (A6). Graphs of the functions given by 
these equations are shown in the diagram, and it will be 
seen that a satisfactory merging of the two solutions is 
obtained. 

APPENDIX B 

We consider the solution of (27) near 0 = 0. Since 
(dH/dB) = 0 at B = 0 it is easy to show that H(0) = H, 
satisfies the equation 

2c(H:,+AH,) = ;-,i(O). (Bl) 
0 

Approximate values of E and A are given after (27) with A, 
and AZ left free. It is therefore a simple matter to compute 
the value of H, for any choice of A1 and A,, and this will be 
taken as representative of H. Our purpose here is to 
compare the exact value found in this way with the 
asymptotic solutions, valid for large and small subcooling, 
given in the main text. 

As an illustration we set A, = 250°C and computed the 
positive real root of (Bl) as a function of A, from A2 = 0°C 
to A2 = 20°C and the results are shown graphically in Fig. 
2, along with the asymptotic solutions. Note that H, 
contains scaling factors which depend on A, and A*, so that 
the film thickness does not really tend to zero as A2+0. 
This diagram is intended to indicate the range in which the 
asymptotic solutions are useful rather than the actual 
variation in film thickness; a similar equation to (Bl) 
involving h* can of course be solved but this would lose the 
advantage, mentioned in the main text, that the coefficients 
in (Bl) are independent of U, and a. 

EBULLITION EN FILM STATIONNAIRE ET TRANSITOIRE 
SUR UNE SPHERE ET EN CONVECTION FORCEE 

R&sum&-On etudie thioriquement I’ibullition en film sur une sphere en convection for&e. On analyse en 
premier le cas stationnaire, en supposant que la temperature de la sphere est maintenue constante. Le cas 
du sous-refroidissement est inclus dans le modele. Des solutions analytiques simples sont obtenues pour 
l’epaisseur du film de vapeur et le nombre de Nusselt local dans deux cas limites qui correspondent au 
sous-refroidissement tres grand et petit. L’utilitt de ces deux risultats est accrue par deux facteurs: le 
domaine non couvert par ces cas limites est petit et les parambtres intervenant dans les solutions ne 
dependent pas explicitement du rayon de la sphere ou de sa vitesse. On montre ensuite que (dans des 
conditions exptrimentales qui seront d&rites ulttrieurement) les phtnomenes transitoires dans la vapeur 
et le liquide sont ntgligeables et, par consequent, on peut supposer valable une description quasi- 
stationnaire dans ces regions. Ainsi la theorie quasi-stationnaire obtenue peut &tre utilisee pour formuler 

le problime non stationnaire pour la sphere. On donne la solution de ce probleme. 

STATIONARES UND INSTATIONARES FILMSIEDEN AN EINER KUGEL 
BE1 ERZWUNGENER KONVEKTION 

Zusammenfassung-Es wurde eine theoretische Untersuchung des Filmsiedens an einer Kugel bei 
erzwungener Striimung durchgefiihrt. Zuerst wurde unter der Annahme, da13 die Oberflachentemperatur 
konstant gehalten wird, der stabile Zustand untersucht. Unterkiihlung ist in das Model1 mit einbezogen. 
Einfache analytische Losungen wurden fur die Dicke des Dampffilms und die iirtliche Nusselt-Zahl in 
zwei Grenzfallen erzielt, die etwa starker und geringer Unterkiihlung entsprechen. Die Brauchbarkeit 
dieser beiden Ergebnisse wird erhoht durch zwei Faktoren: der Bereich, der von einem der beiden Fille 
nicht iiberdeckt wird, ist sehr schmal, und die in der Losung vorkommenden Parameter hangen explizit 
nicht vom Radius der Kugel oder von deren Geschwindigkeit ab. Weiterhin wird gezeigt, da13 (im Bereich 
der bis jetzt vorliegenden Experimente) die Zeitabhlngigkeit der Vorglnge in Dampf und Kiihlmittel 
vernachlassigbar ist und deshalb eine quasi-stationare Approximation fur dieses Gebiet zulassig ist. 
Daher kann die aus der stationlren Betrachtung erhaltene Theorie zur Behandlung des instationaren 

Warmeiibergangs an der Kugel verwendet werden. Die Losung dieses Problems wird angegeben. 
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YCTOtiL(MBOE M nEPEXOAHOE WIEHOYHOE KMnEHME HA C@EPE FIPM 
HAJIMYMM BbIHY)KAEHHOZi KOHBEK~kfM 

AHHOTZIIW- ~pesoAarcnTe0pe~u~ec~oe kfccneAoBaHHe nneHovHor0 KH~~HAII ~a c$epe npu wdnkiwwi 

BblHy?KAeHHOti KOHBeKUU&%. npGKAe BCWO aHanH3,lpyeTCSl CraUHOHapHblti npOI,eCC, T.e. AenaeTCIl 

AO"yUeHHe 0 flOCTORHCTBe TeMnepaTypbI C+epbI. B MOAIenb BKn"YleH TaK)Ke HeAOrpeB XWAKOCTM. 

nOnyqeHbl npocTbre aHanxTmecKAe petueHm Am TonuiHbl nnemui napa H noKanbHor0 wcna 

HyCCenbTa An8 Asyx rlpeAenbHbrx cnyqaee, rpy60 cooTeeTcTBywuex Hanwwo 6onbruoro A Ma.Toro 

HeAorpesa. nO_TyVeHHble pe3ynbTaTbl npeACrasnmoT oco6yro UeHHocTb Gnaronapfl cnenymmbf AB~M 

+aKTOpaM: 06rraCTb. He OXBaqeHHaR 3TAMH npeAe.UbHblMH CnyqanMif, AOBOnbHO Mana II BXOAllUMe 

B peueHHn napaMeTpbl SIBHO He ~~BACRT OT paAMyca C+epbI wmi ee CKO~OCTH. KpoMe Tore 

"OKa?aHO, VT0 AJln napaMeTpOB. COOTBeTCT~ylOLUHX rlpOBeAeHHblM ZiKCllepHMeHTaM, HeCTaUMOHapHbIe 

IIBneHm B nape H WIAKOCTM IIpeHe6pexEiMO Manbl M "03~0~~ LLnR ~THX o6nacTeP CnpaBeAnsBo 

KBaSMCTaUHOHapHOe npu6nwxeHse. TaKNM o6pa3oM,CTauaOHapHanTeopHs MOTeT 6blTb MClIOJIb30BaH~ 

Ann ~op~ynepokw~ 3aKdw HecTauioHapHoro TerInOO6MeHa c+epbl. npABeAeH0 peuefiae naHklo8 

3aAasa. 


